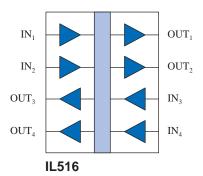

Low-Cost Digital Isolators


Functional Diagrams

IsoLoop is a registered trademark of NVE Corporation. *U.S. Patent numbers 5,831,426; 6,300,617 and others.

Features

- +5 V / +3.3 V CMOS/TTL Compatible
- 2 Mbps Maximum Speed
- -40°C to 85°C Operating Temperature
- 2500 V_{RMS} Isolation (1 min.)
- 10 ns Pulse Width Distortion
- 25 ns Propagation Delay
- DC-Correct
- 30 kV/µs Typical Common Mode Rejection
- Low EMC Footprint
- 8-pin MSOP; 0.3" and 0.15" 8-pin and 16-pin SOIC Packages
- UL 1577 and IEC 61010-2001 Approved

Applications

- ADCs and DACs
- Digital Fieldbus
- RS-485 and RS-422
- Multiplexed Data Transmission
- Data Interfaces
- Board-to-Board Communication
- Digital Noise Reduction
- Ground Loop Elimination
- Peripheral Interfaces
- Parallel Bus
- · Logic Level Shifting

Description

IL500-Series isolators are low cost isolators operating up to 2Mbps over an operating temperature range of -40° C to 85°C.

The devices use NVE's patented* IsoLoop® spintronic Giant Magnetoresistive (GMR) technology.

REV. H

Absolute Maximum Ratings

Parameters	Symbol	Min.	Тур.	Max.	Units	Test Conditions
Storage Temperature	T_{s}	-55		150	°C	
Ambient Operating Temperature ⁽¹⁾	T_A	-55		150	°C	
Supply Voltage	V_{DD1}, V_{DD2}	-0.5		7	V	
Input Voltage	$V_{\rm I}$	-0.5		$V_{\rm DD} + 0.5$	V	
Output Voltage	V_{o}	-0.5		$V_{\rm DD} + 0.5$	V	
Output Current Drive	I_{o}			10	mA	
Lead Solder Temperature				260	°C	10 sec.
ESD			2		kV	HBM

Recommended Operating Conditions

Parameters	Symbol	Min.	Тур.	Max.	Units	Test Conditions
Ambient Operating Temperature	T_{A}	-40		85	°C	
Supply Voltage	V_{DD1}, V_{DD2}	3.0		5.5	V	
Logic High Input Voltage	V_{IH}	2.4		$V_{\scriptscriptstyle m DD}$	V	
Logic Low Input Voltage	$V_{\rm IL}$	0		0.8	V	
Input Signal Rise and Fall Times ⁽¹⁰⁾	t_{IR}, t_{IF}		DC-Correct			

Insulation Specifications

Parameters	Symbol	Min.	Typ.	Max.	Units	Test Conditions
Creepage Distance						
MSOP		3.0			mm	
0.15" SOIC (8-pin or 16-pin)		4.0			mm	
0.3" SOIC		8.1			mm	
Leakage Current			0.2		μA	240 V _{RMS} , 60 Hz
Barrier Impedance			>10 ¹⁴ 3		$\Omega \parallel pF$	

Package Characteristics

i ackage onaracteristics						
Parameters	Symbol	Min.	Тур.	Max.	Units	Test Conditions
Capacitance (Input–Output) ⁽⁵⁾	C_{I-O}		4		pF	f = 1 MHz
Thermal Resistance						
MSOP	$\theta_{ m JC}$		168		°C/W	Th
0.15" 8-pin SOIC	$\theta_{ m JC}$		144		°C/W	Thermocouple at center underside
0.15" 16-pin SOIC	$\theta_{ m JC}$		41		°C/W	
0.3" 16-pin SOIC	$\theta_{ m JC}$		28		°C/W	of package
Package Power Dissipation	Pnp			150	mW	$f = 1 \text{ MHz}, V_{DD} = 5 \text{ V}$

Safety and Approvals

IEC61010-1

TUV Certificate Numbers: N1502812, N1502812-101

Classification as Reinforced Insulation

		Pollution	Material	Max. Working
Model	Package	Degree	Group	Voltage
IL5xx-1	MSOP	II	III	$150 V_{RMS}$
IL5xx-3	8-pin and 16-pin 0.15" SOIC	II	III	$150 V_{RMS}$
IL5xx	0.3" SOIC	II	III	$300 V_{RMS}$

UL 1577

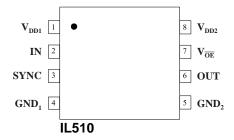
Component Recognition Program File Number: E207481

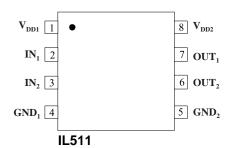
Rated $2500V_{RMS}$ for 1 minute

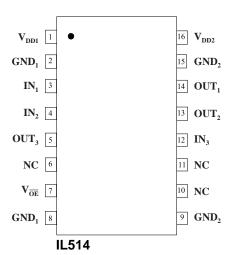
Soldering Profile

Per JEDEC J-STD-020C, MSL=2

IL510 Pin Connections

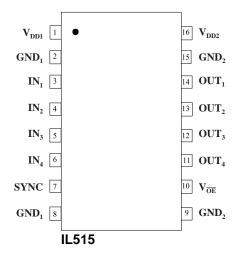

1	V_{DD1}	Supply voltage
2	IN	Data in
		Internal refresh clock disable
3	SYNC	(normally enabled and internally
		held low with $10 \text{ k}\Omega$)
4	GND_1	Ground return for V _{DD1}
5	GND_2	Ground return for V _{DD2}
6	OUT	Data out
7	1/	Output enable
/	$V_{\overline{OE}}$	(internally held low with 100 kΩ)
8	V_{DD2}	Supply voltage

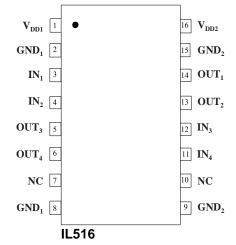

IL511 Pin Connections


1	V_{DD1}	Supply voltage
2	IN_1	Data in, channel 1
3	IN_2	Data in, channel 2
4	GND_1	Ground return for V _{DD1}
5	GND_2	Ground return for V _{DD2}
6	OUT_2	Data out, channel 2
7	OUT_1	Data out, channel 1
8	V_{DD2}	Supply voltage

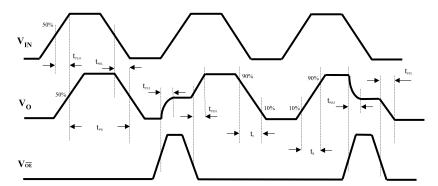
IL514 Pin Connections

1	V_{DD1}	Supply voltage 1		
2	GND ₁	Ground return for V _{DD1}		
	GND ₁	(pin 2 internally connected to pin 8)		
3	IN_1	Data in, channel 1		
4	IN_2	Data in, channel 2		
5	OUT ₃	Data out, channel 3		
6	NC	No connection		
7	V—	Output enable, channel 3		
,	$V_{\overline{OE}}$	(internally held low with 100 k Ω)		
8	GND ₁	Ground return for V _{DD1}		
0	OND_1	(pin 8 internally connected to pin 2)		
9	GND ₂	Ground return for V _{DD2}		
7	OND_2	(pin 9 internally connected to pin 15)		
10	NC	No connection		
11	NC	No connection		
12	IN_3	Data in, channel 3		
13	OUT_2	Data out, channel 2		
14	OUT_1	Data out, channel 1		
15	CND	Ground return for V _{DD2}		
13	GND_2	(pin 15 internally connected to pin 9)		
16	V_{DD2}	Supply voltage		




IL515 Pin Connections

1	V_{DD1}	Supply voltage
2	GND ₁	Ground return for V_{DD1}
	GIVD	(pin 2 internally connected to pin 8)
3	IN_1	Data in, channel 1
4	IN_2	Data in, channel 2
5	IN_3	Data in, channel 3
6	IN_4	Data in, channel 4
		Internal refresh clock disable
7	SYNC	(normally enabled and
		internally held low with $10 \text{ k}\Omega$)
8	GND ₁	Ground return for V _{DD1}
0	OND	(pin 8 internally connected to pin 2)
9	GND ₂	Ground return for V _{DD2}
	GIVD ₂	(pin 9 internally connected to pin 15)
10	$V_{\overline{OE}}$	Output enable
10	▼ OE	(internally held low with $100 \text{ k}\Omega$)
11	OUT_4	Data out, channel 4
12	OUT_3	Data out, channel 3
13	OUT_2	Data out, channel 2
14	OUT_1	Data out, channel 1
15	GND_2	Ground return for V _{DD2}
		(pin 15 internally connected to pin 9)
16	V_{DD2}	Supply voltage


IL516 Pin Connections

1	V_{DD1}	Supply voltage
2	GND_1	Ground return for V _{DD1}
	UND	(pin 2 internally connected to pin 8)
3	IN_1	Data in, channel 1
4	IN_2	Data in, channel 2
5	OUT ₃	Data out, channel 3
6	OUT_4	Data out, channel 4
7	NC	No connection
8	GND_1	Ground return for V _{DD1}
0	GND ₁	(pin 8 internally connected to pin 2)
9	GND ₂	Ground return for V _{DD2}
,	OND_2	(pin 9 internally connected to pin 15)
10	NC	No connection
11	IN_4	Data in, channel 4
12	IN_3	Data in, channel 3
13	OUT_2	Data out, channel 2
14	OUT ₁	Data out, channel 1
15	CND	Ground return for V _{DD2}
15	GND_2	(pin 15 internally connected to pin 9)
16	V_{DD2}	Supply voltage

Timing Diagrams

Legend

	
t_{PLH}	Propagation Delay, Low to High
t_{PHL}	Propagation Delay, High to Low
t_{PW}	Minimum Pulse Width
t_{PLZ}	Propagation Delay, Low to High Impedance
t_{PZH}	Propagation Delay, High Impedance to High
t_{PHZ}	Propagation Delay, High to High Impedance
t_{PZL}	Propagation Delay, High Impedance to Low
t_R	Rise Time
$t_{\scriptscriptstyle \mathrm{F}}$	Fall Time

Truth Tables

Output Enable

V _I	$V_{\overline{OE}}$	Vo
L	L	L
Н	L	Н
L	Н	Z
Н	Н	Z

SYNC

SYNC	Internal Refresh Clock
0	Enabled
1	Disabled

Note: SYNC should be left open or connected to GND to enable the internal refresh clock, or connected to V_{DD} to disable the internal clock.

3.3 Volt Electrical Specifications

Electrical specifications are T_{min} to T_{max} unless otherwise stated.

Electrical specifications are T_{min} to T_{max} u			/m	3.5	TT *4	Transfer of the state of the st
Parameters	Symbol	Min.	Тур.	Max.	Units	Test Conditions
		DC Specific	cations			
Input Quiescent Supply Current	Г	1			T .	T
IL510, IL511, IL515			15	30	μA	
IL514	I_{DD1}		1.7	2	mA	
IL516			3.3	4	mA	
Output Quiescent Supply Current						
IL510			1.7	2	mA	
IL511, IL514, IL516	I_{DD2}		3.3	4	mA	
IL515			6.6	8	mA	
Logic Input Current	I_{I}	-10		10	μA	
I:- II:-h Output V-lt	V _{OH}	$V_{DD} - 0.1$	$V_{ m DD}$		V	$I_{O} = -20 \mu A, V_{I} = V_{IH}$
Logic High Output Voltage		0.8 x V _{DD}	0.9 x V _{DD}		V	$I_O = -4 \text{ mA}, V_I = V_{IH}$
I 'I O ' W'	* 7		0	0.1	3.7	$I_{O} = 20 \mu A, V_{I} = V_{IL}$
Logic Low Output Voltage	V_{OL}		0.5	0.8	V	$I_0 = 4 \text{ mA}, V_I = V_{II}$
		Switching Spec	cifications			
Maximum Data Rate		2			Mbps	$C_{L} = 15 \text{ pF}$
		20			ns	V ₀ 50% points; SYNC=0
Pulse Width ⁽⁷⁾	PW	25			ns	V _o 50% points; SYNC=1
Propagation Delay Input to Output	,			25		
(High to Low)	$t_{ m PHL}$			25	ns	$C_L = 15 \text{ pF}$
Propagation Delay Input to Output	,			25		C 15 E
(Low to High)	$t_{\rm PLH}$			25	ns	$C_L = 15 \text{ pF}$
Propagation Delay Enable to Output	,			-		C 15 E
(High to High Impedance)	$t_{ m PHZ}$			5	ns	$C_L = 15 \text{ pF}$
Propagation Delay Enable to Output	,			5		C 15 F
(Low to High Impedance)	t_{PLZ}			3	ns	$C_L = 15 \text{ pF}$
Propagation Delay Enable to Output	,			5		C 15 E
(High Impedance to High)	t_{PZH}		5	ns	$C_L = 15 \text{ pF}$	
Propagation Delay Enable to Output	4			5		$C_L = 15 \text{ pF}$
(High Impedance to Low)	t_{PZL}			3	ns	$C_L = 15 \text{ pr}$
Pulse Width Distortion ⁽²⁾	PWD			10	ns	$C_L = 15 \text{ pF}$
Propagation Delay Skew ⁽³⁾	$t_{ m PSK}$			10	ns	$C_L = 15 \text{ pF}$
Output Rise Time (10%–90%)	t _R		1	3	ns	$C_L = 15 \text{ pF}$
Output Fall Time (10%–90%)	t _F		1	3	ns	$C_L = 15 \text{ pF}$
Common Mode Transient Immunity		20				
(Output Logic High or Logic Low) ⁽⁴⁾	$ CM_H , CM_L $	20	30		kV/μs	$V_{CM} = 300 \text{ V}$
Channel-to-Channel Skew	t _{CSK}		3	5	ns	$C_L = 15 \text{ pF}$
SYNC Internal Clock Off Time ⁽¹¹⁾	t _{OFF}		J	5	ns	OL 10 PI
Dynamic Power Consumption ⁽⁶⁾	*UFF		140	240	μA/MHz	per channel
2 jamine i oner consumption	Magnetic Field l	mmunity ⁽⁸⁾ (V			par ivilia	1 por chamier
Power Frequency Magnetic Immunity	H _{PF}	1000	1500	י יייייין אונעניי	A/m	50Hz/60Hz
Pulse Magnetic Field Immunity	H_{PM}	1800	2000		A/m	$t_p = 8\mu s$
Damped Oscillatory Magnetic Field		1800	2000		A/m	$l_p - \delta \mu s$ 0.1 Hz - 1 MHz
Cross-axis Immunity Multiplier ⁽⁹⁾	H _{OSC}	1000	2.5		/A/III	U.111Z - IIVITIZ
Cross-axis minimumity Munupher*	K_{X}		2.3			

5 Volt Electrical Specifications

Electrical specifications are T_{min} to T_{max} unless otherwise stated.

Electrical specifications are T_{min} to T_{max} u Parameters	Symbol	Min.	Тур.	Max.	Units	Test Conditions			
1 at attictets	Symbol	DC Specific		ıvıax.	Units	1 cst Conditions			
Input Quiescent Supply Current		DC Specific	cations						
IL510, IL511, IL515		1	24	40	۸	<u> </u>			
IL510, IL511, IL515 IL514	Ţ		24	3	μA mA				
IL514 IL516	I_{DD1}		5	6	mA				
Output Quiescent Supply Current	<u> </u>		3	U	IIIA				
IL510		I	2	3	A	T			
IL510 IL511, IL514, IL516			4	6	mA mA				
IL511, IL514, IL516	I_{DD2}		9	12	mA				
Logic Input Current	I _I	-10	9	10					
Logic input Current	II		V	10	μA	I - 20 A W - W			
Logic High Output Voltage	V _{OH}	$V_{DD} - 0.1$ 0.8 x V_{DD}	V _{DD}		V	$I_O = -20 \mu A, V_I = V_{IH}$ $I_O = -4 \text{ mA}, V_I = V_{IH}$			
		0.8 X V _{DD}	0.9 x V _{DD}	0.1					
Logic Low Output Voltage	V_{OL}		0.5	0.1	V	$I_O = 20 \mu A$, $V_I = V_{IL}$			
		1 1 1 0		0.8		$I_O = 4 \text{ mA}, V_I = V_{IL}$			
M · D · D ·	<u> </u>	Switching Spec	cilications		3.41	G 15 E			
Maximum Data Rate		20			Mbps	$C_L = 15 \text{ pF}$			
Pulse Width ⁽⁷⁾	PW	20			ns	V _o 50% points; SYNC=0			
D D.I. I O		25			ns	V _o 50% points; SYNC=1			
Propagation Delay Input to Output (High to Low)	$t_{ m PHL}$			25	ns	$C_L = 15 \text{ pF}$			
Propagation Delay Input to Output	$t_{\rm PLH}$			25	ns	$C_L = 15 \text{ pF}$			
(Low to High)						-			
Propagation Delay Enable to Output (High to High Impedance)	$t_{ m PHZ}$			5	ns	$C_L = 15 \text{ pF}$			
Propagation Delay Enable to Output (Low to High Impedance)	t_{PLZ}			5	ns	$C_L = 15 \text{ pF}$			
Propagation Delay Enable to Output (High Impedance to High)	t _{PZH}			5	ns	$C_L = 15 \text{ pF}$			
Propagation Delay Enable to Output (High Impedance to Low)	$t_{ m PZL}$			5	ns	$C_L = 15 \text{ pF}$			
Pulse Width Distortion ⁽²⁾	PWD			10	ns	$C_L = 15 \text{ pF}$			
Propagation Delay Skew ⁽³⁾	t _{PSK}			10	ns	$C_L = 15 \text{ pF}$			
Output Rise Time (10%–90%)	t _R		1	3	ns	$C_L = 15 \text{ pF}$			
Output Fall Time (10%–90%)	t _F		1	3	ns	$C_L = 15 \text{ pF}$			
Common Mode Transient Immunity									
Output Logic High or Logic Low) (4) CM _H , CM _L		20	30		kV/μs	$V_{cm} = 300 \text{ V}$			
Channel-to-Channel Skew	$t_{\rm CSK}$		3	5	ns	$C_L = 15 \text{ pF}$			
SYNC Internal Clock Off Time ⁽¹¹⁾	t _{OFF}		3	5	ns	SL 13 pr			
Dynamic Power Consumption ⁽⁶⁾	OFF		200	340	μA/MHz	per channel			
Magnetic Field Immunity ⁽⁸⁾ (V _{DD2} = 5V, 3V <v<sub>DD1<5.5V)</v<sub>									
Power Frequency Magnetic Immunity	H _{PF}	2,800	3,500	· DDI (O.O ()	A/m	50Hz/60Hz			
Pulse Magnetic Field Immunity	H_{PM}	4,000	4,500		A/m	$t_p = 8 \mu s$			
Damped Oscillatory Magnetic Field	H _{OSC}	4,000	4,500		A/m	$t_p = 6 \mu s$ 0.1 Hz - 1 MHz			
Cross-axis Immunity Multiplier ⁽⁹⁾	K _X	4,000	2.5		/A/111	U.IIIZ - IIVIIIZ			
C1035-axis minimumity ividitipher	ıxχ	1	۷.٦			1			

Notes (apply to both 3.3 V and 5 V specifications):

- 1. Absolute maximum ambient operating temperature means the device will not be damaged if operated under these conditions. It does not guarantee performance.
- 2. PWD is defined as $|t_{PHL} t_{PLH}|$. %PWD is equal to PWD divided by pulse width.
- 3. t_{PSK} is the magnitude of the worst-case difference in t_{PHL} and/or t_{PLH} between devices at 25°C.
- 4. CM_H is the maximum common mode voltage slew rate that can be sustained while maintaining $V_0 > 0.8 V_{DD2}$. CM_L is the maximum common mode input voltage that can be sustained while maintaining $V_0 < 0.8 V$. The common mode voltage slew rates apply to both rising and falling common mode voltage edges.
- 5. Device is considered a two terminal device: pins on each side of the package are shorted.
- 6. Dynamic power consumption is calculated per channel and is supplied by the channel's input side power supply.
- 7. Minimum pulse width is the minimum value at which specified PWD is guaranteed.
- 8. The relevant test and measurement methods are given in the Electromagnetic Compatibility section on p. 9.
- 9. External magnetic field immunity is improved by this factor if the field direction is "end-to-end" rather than to "pin-to-pin" (see diagram on p. 9).
- 10. If internal clock is used, devices will respond to DC states on inputs within a maximum of 9 μs. Outputs may oscillate if the SYNC input slew rate is less than 1 V/ms.
- 11. t_{off} is the maximum time for the internal refresh clock to shut down.

Application Information

Electrostatic Discharge Sensitivity

This product has been tested for electrostatic sensitivity to the limits stated in the specifications. However, NVE recommends that all integrated circuits be handled with appropriate care to avoid damage. Damage caused by inappropriate handling or storage could range from performance degradation to complete failure.

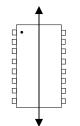
Electromagnetic Compatibility

IsoLoop Isolators have the lowest EMC footprint of any isolation technology. IsoLoop Isolators' Wheatstone bridge configuration and differential magnetic field signaling ensure excellent EMC performance against all relevant standards.

Additionally, on the IL510 and IL515, the internal clock can be disabled for even better EMC performance.

These isolators are fully compliant with generic EMC standards EN50081, EN50082-1 and the umbrella line-voltage standard for Information Technology Equipment (ITE) EN61000. NVE has completed compliance tests in the categories below:

EN50081-1


Residential, Commercial & Light Industrial Methods EN55022. EN55014

EN50082-2: Industrial Environment

Methods EN61000-4-2 (ESD), EN61000-4-3 (Electromagnetic Field Immunity), EN61000-4-4 (Electrical Transient Immunity), EN61000-4-6 (RFI Immunity), EN61000-4-8 (Power Frequency Magnetic Field Immunity), EN61000-4-9 (Pulsed Magnetic Field), EN61000-4-10 (Damped Oscillatory Magnetic Field) ENV50204

Radiated Field from Digital Telephones (Immunity Test)

Immunity to external magnetic fields is even higher if the field direction is "end-to-end" rather than to "pin-to-pin" as shown in the diagram below:

Cross-axis Field Direction

Dynamic Power Consumption

IsoLoop Isolators achieve their low power consumption from the way they transmit data across the isolation barrier. A magnetic field is created around the GMR Wheatstone bridge by detecting the edge transitions of the input logic signal and converting them to narrow current pulses. Depending on the direction of the magnetic field, the bridge causes the output comparator to switch following the input logic signal. Since the current pulses are narrow, about 2.5 ns, the power consumption is independent of mark-to-space ratio and solely dependent on frequency. This has obvious advantages over optocouplers, which have power consumption heavily dependent on mark-to-space ratio.

Power Supply Decoupling

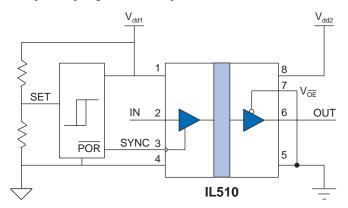
Both power supplies to these devices should be decoupled with low ESR ceramic capacitors of at least 47 nF. Capacitors must be located as close as possible to the $V_{\rm DD}$ pins.

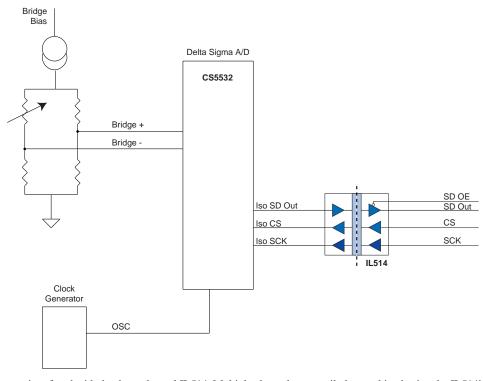
DC Correctness, EMC, and the SYNC Function

NVE digital isolators have the lowest EMC noise signature of any high-speed digital isolator on the market today because of the dc nature of the GMR sensors used. It is perhaps fair to include opto-couplers in that dc category too, but their limited parametric performance, physically large size, and wear-out problems effectively limit side by side comparisons between NVE's isolators and isolators coupled with RF, matched capacitors, or transformers.

IL500-Series isolators has an internal refresh clock which ensure the synchronization of input and output within 9 μ s of the supply passing the 1.5 V threshold. The IL510 and IL515 allow external control of the refresh clock through the SYNC pin thereby further lowering the EMC footprint. This can be advantageous in applications such as hi-fi, motor control and power conversion.

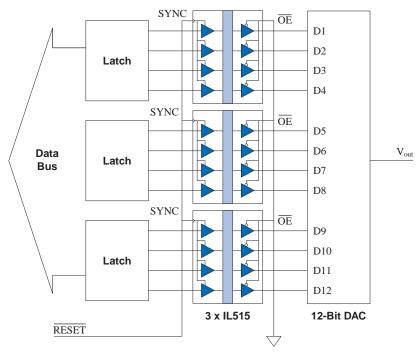
The isolators can be used with Power on Reset (POR) circuits common in microcontroller applications, as the means of ensuring the output of the device is in the same state as the input a short time after power up. Figure 1 shows a practical Power on Reset circuit:



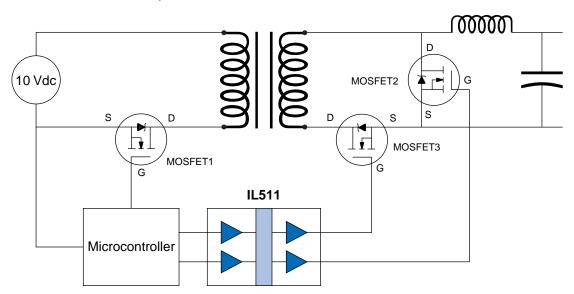

Fig. 1. Typical Power On Reset Circuit for IL510

After POR, the SYNC line goes high, the internal clock is disabled, and the EMC signature is optimized. Decoupling capacitors are omitted for clarity.

Illustrative Applications


Isolated A/D Converter

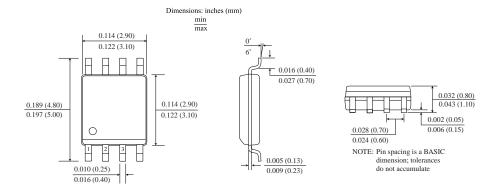
A delta-sigma A-D converter interfaced with the three-channel IL514. Multiple channels can easily be combined using the IL514's output enable function.



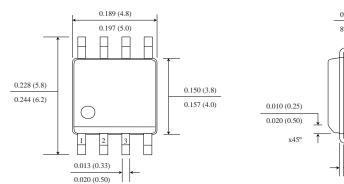
12-Bit D/A Converter Isolation

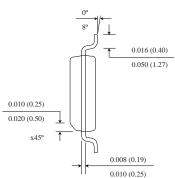
The IL515 four-channel isolator is ideally suited for parallel bus isolation. The circuit above uses three IL515s to isolate a 12-bit DAC. The unique SYNC function automatically synchronizes the outputs to the inputs, ensureing correct data on the isolator outputs. After the reset pulse goes high, data transfer from input to output is initiated by the leading edge of each changing data bit.

Intelligent DC-DC Converter With Synchronous Rectification

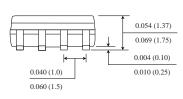


A typical primary-side controller uses the IL511 to drive the synchronous rectification signals from primary side to secondary side. IL511 pulsewidth distortion of 10 ns minimizes MOSFET dead time and maximizes efficiency. The ultra-small MSOP package minimizes board area.

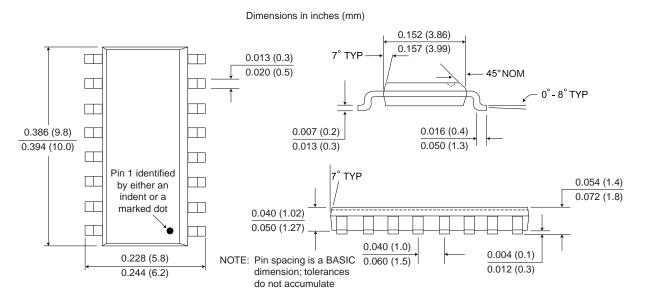


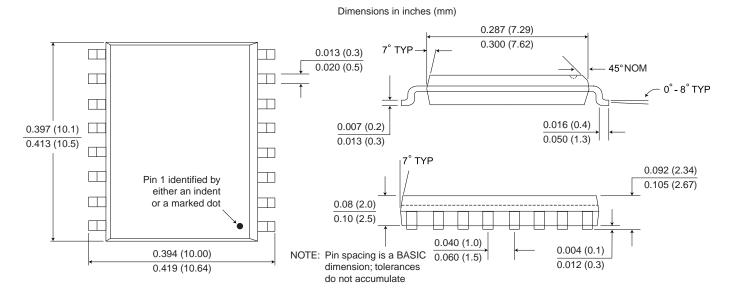

Package Drawings, Dimensions, and Specifications

8-pin MSOP



8-pin SOIC Package


Dimensions in inches (mm)


NOTE: Pin spacing is a BASIC dimension; tolerances do not accumulate

16-pin 0.15" SOIC Package



16-pin 0.3" SOIC Package

Ordering Information

RoHS COMPLIANT

ISB-DS-001-IL500-H Changes:

June 2011 • Added clarification of internal ground connections (p. 4).

ISB-DS-001-IL500-G Changes:

• Clarified SYNC function.

ISB-DS-001-IL500-F Changes:

• Changed pin spacing specification on MSOP drawing.

ISB-DS-001-IL500-E Changes:

• Added EMC details.

ISB-DS-001-IL500-D Changes:

• Add Output Enable to IL515.

• IEC 61010-2001 Approval (removed "pending").

• Added 12-bit DAC illustrative application.

ISB-DS-001-IL500-C Production release

ISB-DS-001-IL500-B

July 2008

Initial release

ISB-DS-001-IL500-A

June 2008

Preliminary release

About NVE

An ISO 9001 Certified Company

NVE Corporation is a high technology components manufacturer having the unique capability to combine spintronic Giant Magnetoresistive (GMR) materials with integrated circuits to make high performance electronic components. Products include Magnetic Field Sensors, Magnetic Field Gradient Sensors (Gradiometer), Digital Magnetic Field Sensors, Digital Signal Isolators and Isolated Bus Transceivers.

NVE is a leader in GMR research and in 1994 introduced the world's first products using GMR material, a line of GMR magnetic field sensors that can be used for position, magnetic media, wheel speed and current sensing.

NVE is located in Eden Prairie, Minnesota, a suburb of Minneapolis. Please visit our Web site at www.nve.com or call (952) 829-9217 for information on products, sales or distribution.

NVE Corporation 11409 Valley View Road Eden Prairie, MN 55344-3617 USA Telephone: (952) 829-9217

Fax: (952) 829-9189 Internet: www.nve.com e-mail: isoinfo@nve.com

The information provided by NVE Corporation is believed to be accurate. However, no responsibility is assumed by NVE Corporation for its use, nor for any infringement of patents, nor rights or licenses granted to third parties, which may result from its use. No license is granted by implication, or otherwise, under any patent or patent rights of NVE Corporation. NVE Corporation does not authorize, nor warrant, any NVE Corporation product for use in life support devices or systems or other critical applications without the express written approval of the President of NVE Corporation.

Specifications shown are subject to change without notice.

ISB-DS-001-IL500-H June 2011